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INTRODUCTION

There is associated with least-squares approximation a vast literature
concerning orthogonal functions, mainly because such functions furnish a
convenient system of coordinates in function spaces. Among the most
extensively studied orthogonal systems are systems of orthogonal poly-
nomials. However, it should be noted that the use of orthogonal polynomials
as approximating functions is not limited to L,-space. See, for instance,
their use in [2, 5].

A standard method for the development of the theory of classical ortho-
gonal polynomials such as the Legendre, Hermite, and Laguerre polynomials
has been treating them as solutions of certain second order differential
equations. In this paper we show that each of these sets of classical poly-
nomials can be obtained as the solutions of an infinite set of even-ordered
differential equations.

Brenke [1] and Meux [4] have obtained conditions for the existence of
orthogonal polynomial solutions of second- and fourth-order ordinary differ-
ential equations, respectively. They showed that with the proper choice of a
weight function and a proper choice of the interval of orthogonality, the clas-
sical orthogonal polynomials of Jacobi, Laguerre, and Hermite are obtained.

This paper uses the results of Krall [3] concerning self-adjoint differential
expressions in order to obtain results for general even-ordered ordinary
differential equations.

POLYNOMIAL SOLUTIONS

Consider the differential equation
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It can be shown in order for this equation to have polynomial solutions of
the form

Vi = ) azxt, ay # 0, )]

i=0

that each coefficient Q,,_;(x) must be a polynomial of degree at most 2n — k
(see [1]). The details of the proof are completely analogous to those in [1]
and are omitted here.

SELF-ADJOINT PROPERTY

Krall [3] has shown that the most general self-adjoint differential expression
of order 2n is
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where the B;s are the Bernoulli numbers. Also, if we use B; =},

0 = B; = B; = -, we can write (3) as
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The following theorem gives sufficient conditions for the self-adjointness
of Eq. (1) over (a, b) with respect to a suitably chosen weight function W(x).
THEOREM 1. If W(x) e C*" on (a, b) and if
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then each equation of the family (1), after multiplication by W(x), is self-adjoint.
Proof. The result follows immediately upon the multiplication of (1) by

W(x) and applying (3), which is the most general self-adjoint differential
expression of order 2n.
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ORTHOGONALITY

In order to apply the standard technique for showing the orthogonality of
the solution set of (1), it is necessary to rewrite the self-adjoint differential
equation (5) in the form

S [T, #1919 = 0, ®)

=0

where the T;’s are to be determined.
From (4) the coefficients of each y/(k) are of the form

" 2s) 22k _ ]
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s>[(k—1) /2]

k=0,1,...,2n ™

Expanding (6) by Leibnitz’s rule for higher ordered derivatives and regrouping
the coefficients of each y{®, we conclude that the coefficients are given by

[x/21 ;
k — [k/2] + i\ ge—slr/ale20 -
( k2] —i ) Tlterstis s k=0,1,.,2n, ®

=0

where [k/2] is the usual greatest-integer-function and 7; is defined to be
identically zero for i > n.

In order to solve for the Ts, we equate (7) and (8) and consider
k = 2n,2n — 2,..., 2, obtaining in turn the values of 7, , T,,_, ,..., T; . Now
if the techniques used in [4] are applied » — 1 times, we obtain

fb Wy y; dx = 0.

That is, the solutions of (1) are orthogonal on (g, b) with respect to W(x).
We state this result as the following theorem.

THEOREM 2. If the conditions of Theorem 1 are satisfied and if
Tik)¥0 at x=a and x=0> O<k<s<n

then for A; + A; the corresponding solutions of (1) form an orthogonal set of
polynomials on a < x < b with respect to the positive weight function W(x).

An Example. Consider now the sixth-order differential equation and
suppose that W(x) = 1 on the interval (—1, 1). By using (5), equating (7)
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and (8), and using methods analogous to those in [4], we obtain the self-
adjoint differential equation

[(1— 2P yT" + 86 — D?yY — [0 — )T + ¥ + 1Py =0,
©®

which has the classical Legendre polynomials as solutions. This equation
could very well be called the sixth-order Legendre differential equation. It is
interesting to note the similarity of the coefficients of the various y'*’s in (9)
and the coefficients of the classical second order Legendre differential
equation

1—x)y —2x) + XA+ 1Dy =0,
and those given in [4] by
[(1 =22y + 2% — 1) yT — QA + 1)y = 0.

Also, similar results can be obtained for the Jacobi, Laguerre, and Hermite
polynomials. Thus, an infinite set of even-ordered differential equations has
been found to be associated with each of these classical orthogonal
polynomials,

Many interesting questions arise from these results. For example, what is
the general form of the Legendre differential equation of order 2n ? Can these
higher ordered classical differential equations be obtained by the use of the
usual generating functions for the polynomials ?
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